3.1273 \(\int \frac{(c+d \tan (e+f x))^{3/2}}{\sqrt{a+b \tan (e+f x)}} \, dx\)

Optimal. Leaf size=218 \[ \frac{2 d^{3/2} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b \tan (e+f x)}}{\sqrt{b} \sqrt{c+d \tan (e+f x)}}\right )}{\sqrt{b} f}-\frac{i (c-i d)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a-i b} \sqrt{c+d \tan (e+f x)}}\right )}{f \sqrt{a-i b}}+\frac{i (c+i d)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c+i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{f \sqrt{a+i b}} \]

[Out]

((-I)*(c - I*d)^(3/2)*ArcTanh[(Sqrt[c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a - I*b]*Sqrt[c + d*Tan[e + f*x]]
)])/(Sqrt[a - I*b]*f) + (I*(c + I*d)^(3/2)*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a + I*b]*Sqr
t[c + d*Tan[e + f*x]])])/(Sqrt[a + I*b]*f) + (2*d^(3/2)*ArcTanh[(Sqrt[d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[b]*Sq
rt[c + d*Tan[e + f*x]])])/(Sqrt[b]*f)

________________________________________________________________________________________

Rubi [A]  time = 1.07885, antiderivative size = 218, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 8, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.276, Rules used = {3575, 910, 63, 217, 206, 6725, 93, 208} \[ \frac{2 d^{3/2} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b \tan (e+f x)}}{\sqrt{b} \sqrt{c+d \tan (e+f x)}}\right )}{\sqrt{b} f}-\frac{i (c-i d)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a-i b} \sqrt{c+d \tan (e+f x)}}\right )}{f \sqrt{a-i b}}+\frac{i (c+i d)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c+i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{f \sqrt{a+i b}} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*Tan[e + f*x])^(3/2)/Sqrt[a + b*Tan[e + f*x]],x]

[Out]

((-I)*(c - I*d)^(3/2)*ArcTanh[(Sqrt[c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a - I*b]*Sqrt[c + d*Tan[e + f*x]]
)])/(Sqrt[a - I*b]*f) + (I*(c + I*d)^(3/2)*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a + I*b]*Sqr
t[c + d*Tan[e + f*x]])])/(Sqrt[a + I*b]*f) + (2*d^(3/2)*ArcTanh[(Sqrt[d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[b]*Sq
rt[c + d*Tan[e + f*x]])])/(Sqrt[b]*f)

Rule 3575

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Wit
h[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[((a + b*ff*x)^m*(c + d*ff*x)^n)/(1 + ff^2*x^2), x]
, x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] &&
NeQ[c^2 + d^2, 0]

Rule 910

Int[((d_.) + (e_.)*(x_))^(m_)/(Sqrt[(f_.) + (g_.)*(x_)]*((a_.) + (c_.)*(x_)^2)), x_Symbol] :> Int[ExpandIntegr
and[1/(Sqrt[d + e*x]*Sqrt[f + g*x]), (d + e*x)^(m + 1/2)/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g}, x] &
& NeQ[c*d^2 + a*e^2, 0] && IGtQ[m + 1/2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(c+d \tan (e+f x))^{3/2}}{\sqrt{a+b \tan (e+f x)}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{(c+d x)^{3/2}}{\sqrt{a+b x} \left (1+x^2\right )} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \left (\frac{d^2}{\sqrt{a+b x} \sqrt{c+d x}}+\frac{c^2-d^2+2 c d x}{\sqrt{a+b x} \sqrt{c+d x} \left (1+x^2\right )}\right ) \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{c^2-d^2+2 c d x}{\sqrt{a+b x} \sqrt{c+d x} \left (1+x^2\right )} \, dx,x,\tan (e+f x)\right )}{f}+\frac{d^2 \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \left (\frac{-2 c d+i \left (c^2-d^2\right )}{2 (i-x) \sqrt{a+b x} \sqrt{c+d x}}+\frac{2 c d+i \left (c^2-d^2\right )}{2 (i+x) \sqrt{a+b x} \sqrt{c+d x}}\right ) \, dx,x,\tan (e+f x)\right )}{f}+\frac{\left (2 d^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b \tan (e+f x)}\right )}{b f}\\ &=\frac{\left (i (c-i d)^2\right ) \operatorname{Subst}\left (\int \frac{1}{(i+x) \sqrt{a+b x} \sqrt{c+d x}} \, dx,x,\tan (e+f x)\right )}{2 f}+\frac{\left (i (c+i d)^2\right ) \operatorname{Subst}\left (\int \frac{1}{(i-x) \sqrt{a+b x} \sqrt{c+d x}} \, dx,x,\tan (e+f x)\right )}{2 f}+\frac{\left (2 d^2\right ) \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b \tan (e+f x)}}{\sqrt{c+d \tan (e+f x)}}\right )}{b f}\\ &=\frac{2 d^{3/2} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b \tan (e+f x)}}{\sqrt{b} \sqrt{c+d \tan (e+f x)}}\right )}{\sqrt{b} f}+\frac{\left (i (c-i d)^2\right ) \operatorname{Subst}\left (\int \frac{1}{-a+i b-(-c+i d) x^2} \, dx,x,\frac{\sqrt{a+b \tan (e+f x)}}{\sqrt{c+d \tan (e+f x)}}\right )}{f}+\frac{\left (i (c+i d)^2\right ) \operatorname{Subst}\left (\int \frac{1}{a+i b-(c+i d) x^2} \, dx,x,\frac{\sqrt{a+b \tan (e+f x)}}{\sqrt{c+d \tan (e+f x)}}\right )}{f}\\ &=-\frac{i (c-i d)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a-i b} \sqrt{c+d \tan (e+f x)}}\right )}{\sqrt{a-i b} f}+\frac{i (c+i d)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c+i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{\sqrt{a+i b} f}+\frac{2 d^{3/2} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b \tan (e+f x)}}{\sqrt{b} \sqrt{c+d \tan (e+f x)}}\right )}{\sqrt{b} f}\\ \end{align*}

Mathematica [A]  time = 2.02958, size = 269, normalized size = 1.23 \[ \frac{\frac{2 d^{3/2} \sqrt{c+d \tan (e+f x)} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b \tan (e+f x)}}{\sqrt{b c-a d}}\right )}{\sqrt{b c-a d} \sqrt{\frac{b (c+d \tan (e+f x))}{b c-a d}}}+\frac{\sqrt{-c-i d} (d-i c) \tan ^{-1}\left (\frac{\sqrt{-c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{\sqrt{a+i b}}+\frac{\sqrt{c-i d} (d+i c) \tan ^{-1}\left (\frac{\sqrt{c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{-a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{\sqrt{-a+i b}}}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*Tan[e + f*x])^(3/2)/Sqrt[a + b*Tan[e + f*x]],x]

[Out]

((Sqrt[-c - I*d]*((-I)*c + d)*ArcTan[(Sqrt[-c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a + I*b]*Sqrt[c + d*Tan[e
 + f*x]])])/Sqrt[a + I*b] + (Sqrt[c - I*d]*(I*c + d)*ArcTan[(Sqrt[c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[-a
+ I*b]*Sqrt[c + d*Tan[e + f*x]])])/Sqrt[-a + I*b] + (2*d^(3/2)*ArcSinh[(Sqrt[d]*Sqrt[a + b*Tan[e + f*x]])/Sqrt
[b*c - a*d]]*Sqrt[c + d*Tan[e + f*x]])/(Sqrt[b*c - a*d]*Sqrt[(b*(c + d*Tan[e + f*x]))/(b*c - a*d)]))/f

________________________________________________________________________________________

Maple [F]  time = 180., size = 0, normalized size = 0. \begin{align*} \int{ \left ( c+d\tan \left ( fx+e \right ) \right ) ^{{\frac{3}{2}}}{\frac{1}{\sqrt{a+b\tan \left ( fx+e \right ) }}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c+d*tan(f*x+e))^(3/2)/(a+b*tan(f*x+e))^(1/2),x)

[Out]

int((c+d*tan(f*x+e))^(3/2)/(a+b*tan(f*x+e))^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d \tan \left (f x + e\right ) + c\right )}^{\frac{3}{2}}}{\sqrt{b \tan \left (f x + e\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(3/2)/(a+b*tan(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((d*tan(f*x + e) + c)^(3/2)/sqrt(b*tan(f*x + e) + a), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(3/2)/(a+b*tan(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (c + d \tan{\left (e + f x \right )}\right )^{\frac{3}{2}}}{\sqrt{a + b \tan{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))**(3/2)/(a+b*tan(f*x+e))**(1/2),x)

[Out]

Integral((c + d*tan(e + f*x))**(3/2)/sqrt(a + b*tan(e + f*x)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(3/2)/(a+b*tan(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError